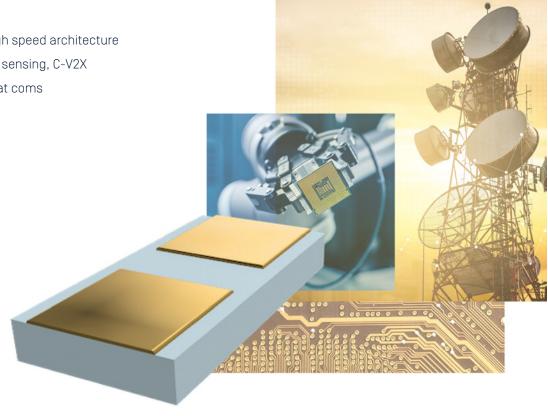
Featured Capacitor Company


Quantic Eulex

Introducing the Innovative "Eulex Gap Capacitor"

A High Frequency Ceramic Capacitor Technology Disrupting the RF & Microwave Industry

- Test & Measurement
- Al & Machine learning new high speed architecture
- Automotive, mmwave / vision sensing, C-V2X
- Military & aerospace radar / sat coms
- Photonics

Quantic Evans

Quantic Paktron

Quantic UTC

Quantic Eulex

Hybrid Wet Tantalum quanticevans.com

Multilayer Polymer Film quanticpaktron.com Multilayer Ceramic quanticutc.com High Frequency Ceramic quanticeulex.com

Index

QUANTIC™ EULEX

High Frequency Ceramic Capacitors

Gap Capacitor

Pages **3-7**

Vertical Layer MLCC

Page 8

Ultra-High Q MLCC

Page 9

Products Overview

Page **10**

QUANTIC™ EVANS

Power Dense, SWaP-Optimized, Hybrid Wet Tantalum Capacitors

Products Overview

Pages **11-12**

QUANTIC™ PAKTRON

Stacked, Multi-Layer Polymer (MLP) Film Capacitors

Products Overview

Pages 13-14

QUANTIC™ UTC

Multi-Layer Ceramic Capacitors

Products Overview

Page **15**

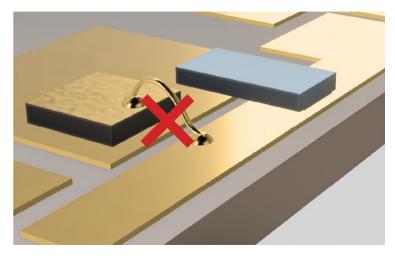
CAPACITOR PORTFOLIO OVERVIEW

Page 16

Quantic Eulex

Introducing the "Eulex Gap Capacitor"

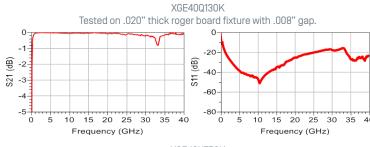
The Eulex Gap Capacitor, developed by Quantic[™] Eulex, is an innovative solution designed to revolutionize the RF and microwave industry. This novel design overcomes the limitations of traditional single-layer capacitors (SLCs) by offering significant performance and cost benefits. The Eulex Gap Capacitor features an internal structure that creates a true single-layer capacitor without requiring wire-bonding. This design enables a capacitance gain of up to 20 times compared to competitors, using the same dielectric, case size, and voltage.

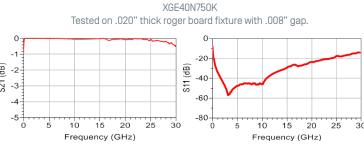

Advantages

- Increased Capacitance: As the configuration of the electrodes generates more capacitance from the same dielectric material, the Eulex Gap Capacitor can achieve up to twenty [20] times more capacitance than competitors' designs.
- Simplified Dielectric Selection: The Eulex Gap Capacitor covers our competitors' full range of capacitance offerings using only three [3] dielectrics, compared to up to twenty-six [26] dielectrics required by competitors.
- Elimination of Wire-Bonding: The Eulex Gap Capacitor can be flip-chip or surface mounted, completely eliminating the need for wire-bonding.
- Improved Performance: Independent testing has shown the Eulex Gap Capacitor maintains excellent performance, with no dB loss at lower frequencies and less than 1 dB loss at 67 GHz
- Lower Manufacturing Costs: The efficient design of the Eulex Gap Capacitor results in lower manufacturing costs, which are passed on to customers.

Key Applications

For DC blocking, coupling, RF bypass, filtering, and tuning in:

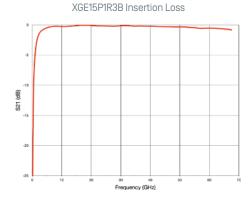

- Photonics
- Synchronous Optical Networking (SONET)
- Receive & Transmit Optical Sub-Assemblies (TOSA/ROSA)
- Transimpedance Amplifiers (TIA)
- High-Speed Data
- Test Equipment
- Excellent solution for strip-line or co-planar waveguide



The "Eulex Gap Capacitor" Outperforms the Competition

- Up to 20x capacitance
- Fewer dielectrics provide simpler part selection
- High reliability
- SMD eliminates need for wire bond
- Broadband performs to 67GHz

Performance Data



Quantic Eulex

Quantic X-Microwave

Our Design Kit of Common Part Sizes

Eulex Part Number	Case Size	Capacitance	Voltage	тсс	Termination
XGG10X300KGW	0201	30pF	50V	±15%	Au
XGG10X820KGW	0201	82pF	50V	±15%	Au
XGG15POR5BGW	0402	0.5pF	50V	±30ppm	Au
XGG15POR7BGW	0402	0.7pF	50V	±30ppm	Au
XGG15P1R0BGW	0402	1.0pF	50V	±30ppm	Au
XGG15Q 1R5CGW	0402	1.5pF	50V	±30ppm	Au
XGG15Q2R0CGW	0402	2.0pF	50V	±30ppm	Au
XGG15C100KGW	0402	10pF	50V	+0/-5%	Au
XGG15C300KGW	0402	30pF	50V	+0/-5%	Au
XGG15X820KGW	0402	82pF	50V	±15%	Au
XGG15X181MGW	0402	180pF	50V	±15%	Au
XGG15Y102MGW	0402	1000pF	50V	+22/82%	Pt/Ag
XGG6025Y202MGW	0603	3000pF	50V	+22/82%	Pt/Ag

^{*} Other sizes, values and termination materials are available

High Reliability (Life) Tests

XGB15N100ZG

W90-11 Life Test [20pcs]				
100G0hms	Avg Cap (pF)	DF%	IR	Date
Initial	12.73	20 pass	20 pass	10/30/2023
24hrs	10.94	20 pass	20 pass	10/31/2023
100hrs	12.46	20 pass	20 pass	11/3/2023
500hrs	12.12	20 pass	20 pass	11/20/2023
1000hrs	12.24	20 pass	20 pass	12/11/2023
2000hrs	12.30	20 pass	20 pass	1/22/2024
3000hrs	12.27	20 pass	20 pass	3/3/2024
4000hrs	12.35	20 pass	20 pass	4/14/2024
5000hrs	12.35	20 pass	20 pass	5/26/2024
6000hrs	12.13	20 pass	20 pass	7/7/2024
7000hrs	12.38	20 pass	20 pass	8/18/2024
Rated Voltage: 100 Vdc IR 025°C: 100 GO 100 vdc				

DWV: 25U VdC						
		Humidity Test (12 pcs)				
240Hrs	Avg Cap (pF)	DF	IR	Date		
Initial	11.84	12 pass	12 pass	12/5/2023		

IR @125°C: NA

Voltage Conditioning: 200 vdc

XGB15N120MG

Capacitance: 10pf + 80%/- 20%

Dissipation Factor: 0.15% Max

W90-13 Life Test (20pcs)				
100G0hms	Avg Cap (pF)	DF%	IR	Date
Initial	13.73	20 pass	20 pass	11/27/2023
24hrs	13.80	20 pass	20 pass	11/28/2023
100hrs	13.76	20 pass	20 pass	12/1/2023
500hrs	13.78	20 pass	20 pass	12/18/2023
1000hrs	13.77	20 pass	20 pass	1/8/2024
2000hrs	13.65	20 pass	20 pass	2/19/2024
3000hrs	13.62	20 pass	20 pass	3/31/2024
4000hrs	13.70	20 pass	20 pass	5/12/2024
5000hrs	13.77	20 pass	20 pass	6/23/2024
6000hrs	13.77	20 pass	20 pass	8/4/2024

Rated Voltage: 100 Vdc	IR 025°C: 100 GΩ, 100 vdc
Capacitance: 12pF +/- 20%	IR @125°C: NA
Dissipation Factor: 0.15% Max	Voltage Conditioning: 200 vdc
DWV: 250 Vdc	

XGB15C470MG

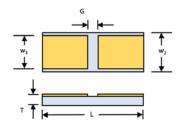
W50-11 Life Test (20pcs)				
100G0hms	Avg Cap (pF)	DF%	IR	Date
Initial	46.10	20 pass	20 pass	10/30/2023
24hrs	43.68	20 pass	20 pass	10/31/2023
100hrs	44.29	20 pass	20 pass	11/3/2023
500hrs	43.53	20 pass	20 pass	11/20/2023
1000hrs	43.27	20 pass	20 pass	12/11/2023
2000hrs	43.15	20 pass	20 pass	1/22/2024
3000hrs	37.95	20 pass	20 pass	3/3/2024

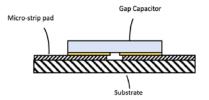
Rated Voltage: 100 Vdc	IR 025°C: 100 GΩ, 100 vdc
Capacitance: 4/pF +/- 20%	IR @125°C: NA
Dissipation Factor: 0.15% Max	Voltage Conditioning: 200 vdc
DWV: 250 Vdc	

XGB15X121MG

W02-12 Life Test (20pcs)				
100G0hms	Avg Cap (pF)	DF%	IR	Date
Initial	123.35	20 pass	20 pass	10/20/2023
24hrs	110.15	20 pass	20 pass	10/21/2023
100hrs	103.95	20 pass	20 pass	10/24/2023
500hrs	106.10	20 pass	20 pass	11/10/2023
1000hrs	104.3	20 pass	20 pass	12/1/2023
2000hrs	102.9	20 pass	20 pass	1/12/2024
3000hrs	99.14	20 pass	20 pass	2/22/2024
4000hrs	98.97	20 pass	20 pass	4/4/2024
5000hrs	99.05	20 pass	20 pass	5/16/2024
6000hrs	98.2	20 pass	20 pass	6/27/2024

Rated Voltage: 100 vic	IR 025°C: 100 GΩ, 100 vdc
Capacitance: 120pF +/- 20%	IR @125°C: NA
Dissipation Factor: 2.5% Max	Voltage Conditioning: 200 vdc
DWV: 250 Vdc	


Humidity Test (12 pcs)				
240Hrs	Avg Cap (pF)	DF	IR	Date
Initial	122.75	12 pass	12 pass	12/5/2023
Final	121.24	12 pass	12 pass	12/15/2023


XGB15P2R4MG

W40-12 Life Test [20pcs]				
100G0hms	Avg Cap (pF)	DF%	IR	Date
Initial	2.36	19 pass	19 pass	10/20/2023
24hrs	2.31	19 pass	19 pass	10/21/2023
100hrs	2.30	19 pass	19 pass	10/24/2023
500hrs	2.29	19 pass	19 pass	11/10/2023
1000hrs	2.26	19 pass	19 pass	12/1/2023
2000hrs	2.29	19 pass	19 pass	1/12/2024
3000hrs	2.35	19 pass	19 pass	2/22/2024
4000hrs	2.26	19 pass	19 pass	4/4/2024
5000hrs	2.28	19 pass	19 pass	5/16/2024
6000hrs	2.26	19 pass	19 pass	6/27/2024
7000hrs	2.27	19 pass	19 pass	8/8/2024

Rated Voltage: 100 Vdc	IR 025°C: 100 GΩ, 100 vdc
Capacitance: 2.4pF +/- 20%	IR @125°C: NA
Dissipation Factor: 0.15% Max	Voltage Conditioning: 200 vdc
DWV: 250 Vdc	

Standard Dimensions

SIZE	XG10	XG15	XG20	XG25	XG30	XG35	XG40	XG50
Pad Width [W ₁] inch (mm)	0.010 ±0.003	0.015 ±0.003	0.020 ±0.003	0.025 ±0.003	0.030 ±0.003	0.035 ±0.005	0.040 ±0.005	0.050 ±0.010
	(0.254 ±0.076)	(0.381 ±0.076)	(0.508 ±0.076)	(0.635 ±0.076)	[0.762 ±0.076]	(0.889 ±0.127)	(1.016 ±0.127)	(1.27 ±0.254)
Chip Width [W ₂] inch [mm]	0.016 Max	0.020 Max	0.025 Max	0.030 Max	0.035 Max	0.045 Max	0.050 Max	0.065 Max
	(0.406 Max)	(0.508 Max)	[0.635 Max]	(0.762 Max)	(0.889 Max)	[1.143 Max]	(1.27 Max)	[1.615 Max]
Length [L] inch (mm)	0.023 Max	0.040 Max	0.050 Max	0.080 Max				
	(0.584 Max)	[1.016 Max]	[1.270 Max]	[2.032 Max]				
Thickness [T] inch [mm]	0.005 ±0.002	0.005 ±0.002	0.005±0.002	0.005 ±0.002	0.005±t0.002	0.007 ±0.002	0.007±40.002	0.007±0.002
	(0.127 ±0.051)	[0.127 ± 0.051]	(0.127 ±0.051)	(0.127 ±0.051)	(0.127±0.051)	(0.178±0.051)	(0.178 ±0.051)	(0.178 ±0.051)
Gap [G] inch (mm)	0.003 Nom	0.005 Nom	0.005 Nom	0.005 Nom	0.005 Nom	0.005 Nom	0.010 Nom	0.010 Nom
	(0.076) Nom	(0.127) Nom	(0.127) Nom	(0.127) Nom	(0.127) Nom	(0.127) Nom	(0.254) Nom	(0.254) Nom

Custom dimensions also available

Selection Guide

		X	315	XC	20	XC	25	X	G30	X	35	X	3 40	XC	550
	Dielectric	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
	Р	0.95	1.1	1.8	2	2.8	3.3	4	4.7	5.7	6.5	7.5	8.7	11	13
	Q	3.2	3.6	5.8	6.6	9.1	10	13	15	18	22	24	28	40	44
0.01/-14	N	14	16	25	29	40	47	60	68	82	91	110	120	170	190
6.3 Volt	С	48	56	88	100	140	160	200	240	280	330	370	430	590	680
	X	410	470	760	870	1200	1400	1700	2000	2400	2800	3200	3600	5000	5800
	Υ	1700	2000	3200	3600	5000	5700	7400	8400	10000	12000	13000	15000	21000	24000
	Р	0.65	0.75	1.2	1.4	1.9	2.2	2.7	4.4	3.7	4.4	4.8	5.6	7.5	8.7
	Q	2.2	2.5	3.9	4.6	6.2	7.2	9	10	12	14	16	18	25	3
10 \/alt	N	9.4	11	17	20	27	31	39	45	51	60	68	80	108	125
16 Volt	С	33	39	60	70	94	110	140	160	180	210	240	280	370	430
	Χ	290	330	510	600	810	930	1100	1300	1600	1800	2100	2400	3200	3800
	Υ	1200	1400	2100	2500	3400	3900	4900	5600	6500	7600	8600	10000	13000	15000
	Р	0.55	0.65	1	1.8	1.6	1.8	2.3	2.6	3.1	3.5	4	4.6	6.3	7.1
	Q	1.9	2.1	3.3	3.7	5.2	5.8	7.5	8.5	10	11	13	15	20	24
25 Volt	N	8	9	14	16	23	25	33	36	43	50	58	65	90	100
25 VUIL	С	27	33	50	57	80	90	110	130	150	180	200	220	320	360
	Χ	240	270	430	490	680	750	970	1100	1300	1500	1800	2000	2700	3000
	Υ	1000	1200	1800	2000	2800	3200	4000	4600	5500	6200	7200	8200	11000	13000
	Р	0.5	0.55	0.9	1	1.4	1.5	2	2.2	2.7	3	3.5	3.9	5.4	6
	Q	1.6	1.8	2.9	3.2	4.5	5	6.5	7.2	8.8	10	12	13	18	20
50 Volt	N	7	7.8	12	14	20	22	27	33	38	43	49	56	80	86
טט יטונ	С	25	27	43	49	68	75	100	110	130	150	170	190	270	300
	Χ	210	230	370	420	580	650	840	930	1200	1300	1500	1700	2400	2600
	Υ	870	970	1600	1800	2500	2700	3500	3900	4800	5200	6200	6800	9800	11000
	Р	0.4	0.45	0.75	0.82	1.2	1.3	1.6	1.8	2.3	2.5	2.9	3.3	4.6	5.1
	Q	1.3	1.5	2.4	2.7	3.7	4.3	5.4	6.2	7.2	8.2	9.6	11	15	18
100 Volt	N	5.8	6.6	11	12	16	18	23	27	33	36	39	47	65	72
IUU VUIL	С	20	23	37	40	57	640	82	91	110	130	150	160	230	270
	Χ	180	200	330	360	490	560	700	780	960	1100	1200	1400	2000	2200
	Υ	750	820	1300	1500	2000	2300	3000	3300	4000	4500	5200	5800	8200	9100

Part Numbering

XG	L	40	x	302	К	G	W
Gap Capacitor	Voltage Code	Case Size	Dielectric Type	Capacitance Value	Capacitance Tolerance	Metallization Type	Packaging

Dielectric Type	P Porcelain	Q NPQ (Class I)	N NPO (Class I)	C NCS [Class I]	X X7R (Class II)	Y Y5V (Class III)
Operating Temperature Range	-55°C to 125°C	-55°C to 125°C	-55°C to 125°C	-55°C to 125°C	-55°C to 125°C	-30°C to +85°C
Temperature Coefficient [/°C]	Neg.	+25ppm	+30ppm	+0-5%	+15%	+22% -82%
Max Dissipation Factor	0.01%	0.10%	0.15%	0.05%	2.50%	4.00%
Min Insulation Resistance @ 25°C	100GΩ	100GΩ	100GΩ	100GQΩ	100GΩ	10GΩ
Min Insulation Resistance @ 125°C	100GΩ	10GΩ	10GΩ	10GΩ	10GΩ	1GΩ

Capacitance Code			
R05	0.05pF		
OR2	0.20pF		
1R0	1.0pF		
2R7	2.7pF		
270	27pF		
271	270pF		
102	1000pF		

Below 10pF, R denotes a decimal point. For 10pF and above, first 2 digits are significant values and 3rd digit indicates the number of zeros.

	Capacitance Tolerance	
В	+0.10pF	(P,Q) <9.1pF
С	+0.25pF	[P,Q] <9.1pF
D	+0.50pF	[P,Q] <9.1pF
G	+2%	(P,Q) 10pF
J	+5%	[P,Q,N]>10pF
К	+10%	[All Dielectrics]
М	+20%	[All Dielectrics]
Z	+80/-20%	[All Dielectrics]

Capacitance Tolerance				
В	+0.10pF	[P,Q] <9.1pF		
С	+0.25pF	[P,Q] <9.1pF		
D	+0.50pF	[P,Q] <9.1pF		
G	+2%	(P,Q) 10pF		
J	+5%	[P,Q,N]>10pF		
К	+10%	[All Dielectrics]		
М	+20%	[All Dielectrics]		
Z	+80/-20%	(All Dielectrics)		

В	100VDC
Metall	ization
G	Gold (99.9%, 100µin min)

Voltage Code

Α

Е

6.3VDC

16VDC

25VDC

50VDC

Pac	king
W	ESD Waffle Pack

Electrical & Mechanical Characteristics				
Voltage Rating:	6.3, 16, 25, 50, 100 WVDC			
Insulation Resistance:	See Chart (Dielectric code)			
Dielectric Withstanding Voltage:	250% of WVDC			
Dissipation Factor:	See Chart [Dielectric code]			
Capacitance Test:	Values > 1000pF [1.0±0.2 VRMS @ 1KHz, 25°C] Values ≤ 1000pF [1.0±0.2 VRMS @ 1MHz, 25°C]			
Shear Strength:	Size dependent			
Metallization Thickness:	100μin min (99.9% Au)			

Vertical layer capacitors are multi-layer ceramic capacitors (MLCC) oriented with their terminations at the top and bottom. They feature high-purity gold conductors ideal for wire bonding, soldering, or epoxy die attach. Quantic Eulex vertical layer capacitors are Class II dielectric and are available in a range of sizes suitable for IC packages and amplifier applications.

Specifications/Test Condition	Dielectric			
	X5R (D)	X7R [X]		
Operating Temperature Range	-55°C to 85°C	-55°C to 125°C		
Temperature Coefficient	±15%	±15%		
Capacitance Test	1kHz @ 1VAC rms	1kHz @ 1VAC rms		
Dissipation Factor	+10% Max	+5% Max		
Insulation Resistance @ 25°C	≥500MΩ μF	≥1000MΩ µF		
Dielectric Withstanding Voltage	250% WVDC	250% WVDC		
Wire Bond Pull Strength (0.001" dia. Au wire)	3 grams min	3 grams min		

Size-Dependent

Advantages

- > High self-resonance frequencies
- > Capacitance values up to 100nF
- > Voltages to 100V Small case sizes from 1515 up Class II (-55°C to 125°C)
- > Custom sizes available
- > Roadmap for High
- > Temperature to 300°C

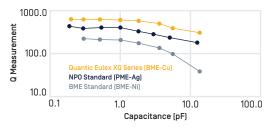
Applications

- DC Blocking over a wide frequency range
- RF Bypass
- Filtering Tuning
- Microwave

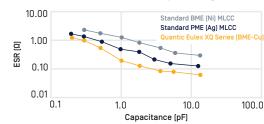
The bottom of the vertical layer capacitor is typically soldered or die attached to a circuit, and the top connection is made by wire-bond.

Download the Vertical Layer MLCC Data Sheet and Selection Guide.

Shear Strength


Quantic Eulex develops innovative ceramic components for the most demanding high frequency microwave, millimeter-wave, and 5G applications. Quantic Eulex solutions deliver design advantages through small-footprint, low profiling packaging, and a wide voltage range—fully tested up to 67 GHz with a roadmap planned from 6.5 to 100 GHz. The reliability of Quantic Eulex capacitors is well established at temperatures ranging from -55°C to +125°C.

Size-Dependent


Monterey Park, CA | 323.266.6603 | info@quanticeulex.com | quanticeulex.com

XQ Series 0402, Q Level Comparison @ 1 GHz

XQ Series 0402, ESR Level Comparison @ 1 GHz

Features

- > Ultra-High Q
- Ultra-Low ESR/ESL
- Ultra-Stable dielectric characteristic (± 30ppm/°C)
- Pb-free terminations and copper electrodes
- > Capacitance (0.1 to 1000pF)
- > Available in narrow tolerances
- > Size 01005 to 1111
- > Voltage up to 1500V
- Operating temperature to 150°C (X8G)

Specifications/Test Condition

	NP0 (Class I)	X8G [Class I]
Size	01005, 0201, 0402, 0505, 0603, 0805, 1111	0603, 0805
Capacitance1	0.1pF to 1000pF	0.2pF to 82pF
Capacitance Tolerance	Cap ≤ 5pF: A(±0.05pF), B(±0.1pF), C(±0.25pF) 5pF < Cap < 10pF: B(±0.1pF), C(±0.25pF), D(±0.5pF) Cap ≥ 10pF: F(±1%), G(±2%), J(±5%)	
Rated Voltages (WVDC)	6.3V, 10V, 25V, 50V, 100V, 200V, 250V, 500V, 1500V	250V, 500V
Q2	01005, 0201, 0402/25V to 50V: Cap < 30pF: $Q \ge 400 + 0402/100 \text{ V} - 200\text{V}$, 0603, 0805, 0505, 1111: Cap < 30pF Cap \ge 30pF: $Q \ge 1400$	· · ·
Insulation Resistance	≥ 10GΩ @ 25°C or ≥ 100GΩ @ 125°C	
Operating Temperature	−55°C to +125°C	-55°C to +150°C
Capacitance Charge (TC)	±30ppm/°C	
Dissipation Factor (DF)	0.10% Max	0.15% Max

Applications

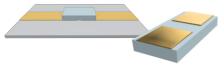
- Power Station
- Base Station
- UHF/Microwave
- Timing Circuits
- Mixers
- 5G Networks

Download the Ultra-High Q MLCC Data Sheet and Selection Guide.

Quantic Eulex develops innovative ceramic components for the most demanding high frequency microwave, millimeter-wave, and 5G applications. Quantic Eulex solutions deliver design advantages through small-footprint, low profiling packaging, and a wide voltage range—fully tested up to 67 GHz with a roadmap planned from 6.5 to 100 GHz. The reliability of Quantic Eulex capacitors is well established at temperatures ranging from -55°C to +125°C.

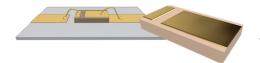
Monterey Park, CA | 323.266.6603 | info@quanticeulex.com | quanticeulex.com

TEL 323-266-6603
URL quanticeulex.com
EML sales@quanticeulex.com


Ceramic Capacitors for the most demanding high frequency, microwave & millimeter-wave applications.

Innovative technology allows ceramic capacitors to be manufactured with higher capacitance using fewer dielectrics while improving temperature and frequency performance in a high reliability package.

- Up to 20X capacitance
- Frequencies exceeding 100GHz
- Ultra-high Q dielectrics
- Simple part selection
- Wide range of voltages
- High Reliability


Featured Products

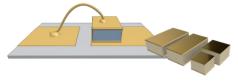
Gap Capacitors

Microwave / millimeter wave gap capacitor for DC blocking, RF bypass, impedance matching, filtering, tuning, coupling.

- > 10X Capacitance Design
- > Ultra-Stable High Q Dielectrics
- > 6.3 Volt to 100 Volt
- Standard and Custom Sizes Available
- > No Wire-bond

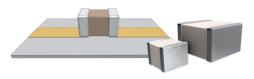
Binary Capacitors

Suitable for Ga-As, 5G, telecom, industrial, military and space applications requiring high self resonance frequencies to 100GHz


- > 20X capacitance design
- > Wire-bondable
- Additional Capacitor on Device
- Configurable Design

Broadband Blocks

Broadband Block combines Eulex patented Gap Capacitor with high capacitance MLCC. For microwave/mm-wave, optical transceivers, broadband test equipment.


- > Size 0201 thru 0805 / 10, 100, 220nF
- Low insertion Loss to 100GHz
- > Lowest Profile

Vertical Layer

High capacitance, wire-bondable MLCC. Class II dielectric for RF Bypass and DC Blocking for wide frequency range.

- Miniature Form Factor (1515-5080)
- Wire-bondable, Au Terminations
- > Class II (-55°C to 125°C)
- > High Frequency Response

Ultra-High Q

High frequency performance MLCC (high Q / low ESR design). Economical solution for demanding RF applications.

- > Size 01005 thru 1111
- > 0.1pF to 1000pF
- > 6.3 volt to 1500 volt
- > NPO dielectric (±30ppm / °C)

Substrates

Eulex has the capability to manufacture custom substrates from a range of ceramic materials with thin or thick film metallization and inclusion of thick film resistors.

- > High Purity AlO
- > High Q dielectrics >100GHz
- > AlN with Exceptional Thermal Conductivity
- > Custom Size & Shape
- Metallization Options

Quantic Evans

Quantic Evans hybrid wet tantalum capacitors are the most power dense in the industry, providing significant SWaP savings when compared to traditional capacitor technologies. Their trusted and proven products are qualified and in service with all Tier 1 aerospace and defense contractors.

- Voltage ranges from 10V 125V (higher for Capacitor Bank Assemblies)
- Ultra-low ESR
- Withstands extreme temperature, shock, and vibration environments
- Unlimited Shelf Life
- Space Grade (routinely screened and qualified to NASA-INST 002); ESA approved
- FCCN FAR99

Featured Products

TDB Series

- > 1.0" x 1.0" square base (5 heights)
- Voltage Range: 10V-125V
- Cap Range: 750uF 150,000uF

THQ Series

- > 1.4" round base (5 heights)
- > Voltage Range: 10V-125V
- > Cap Range: 1.1mF 200mF
- > >over 20 years of proven field service
- > DLA 04001, DLA 04003, DLA 04004, DLA 09022

Capattery series

- > Double layer carbon capacitor technology
- > Voltage range: 5.5V 11V
- > Capacitance range: 0.47F 1F
- > High shock options available

TDD Series

- > 1.4" x 1.4" square base [6 heights]
- > Voltage Range: 10V-125V
- > Cap Range: 1.5mF 300mF
- > Ultra low ESR
- > DLA 15010

THQA2/M2/S2 Series

- > 0.6" round base
- > M2 mounting case option
- > S2 High Shock Option
- > Voltage Range: 10V-125V
- > Cap Range: 215uF 10,000uF
- > DLA 04005

Modules

- > Configurable with any
- > Quantic Evans capacitor
- > Available in 2 8 capacitor assemblies
- > Can choose connector, wiring, orien tation, and more

TDE Series

- > 1.4" x 1.4" square base [6 heights]
- > Voltage Range: 60V-110V
- > Cap Range: 2.2mF 25mF
- > Ultra low ESR

HyCap Series

- Axial Form Factor
- > 3 case sizes T1, T2, T4
- > Voltage Range: 10V-150V
- > Cap Range: 2uF 2700uF
- > High temp 200°C options available
- > DLA 10004, DLA 93026

Common Applications

- Radar (T/R module)
- Power hold-up (MIL-STD-704 / D0 160)
- Propulsion in Space
- Oil & Gas
- Directed Energy
 - Electromagnetic pulse
 - Pulsed laser
 - High power microwave Electric

Design

The operating principal behind Quantic Evans hybrid technology lies within the combination of a high voltage bearing Tantalum Pentoxide (Ta205) anode and a Ruthenium Oxide (Ru02) cathode. When paired, this combination yields the most power dense capacitor in the industry. Quantic Evans capacitors come in a rugged, hermetically sealed, tantalum case and have an unlimited shelf life. Their robust design allows for extreme duty cycles and can withstand high currents, high temperature, and high shock/vibration environments. They are well suited for applications from undersea to deep space and everything in between.

Quantic Evans capacitors are 1/10th the size of traditional wet tantalum capacitors and ¼ the size of the industry's leading aluminum electrolytic capacitor. They also provide high capacitance ratings, long operating life, low ESR, and high current handling capability in a hermetically sealed Hi-Rel package.

Testing

Quantic Evans is certified to ISO9001 and AS9100. Our product is 100% serialized, Inspected, characterized and fully traceable. Every capacitor that is built undergoes over 48 hours of extensive testing which has given it its unmatched reputation for quality and reliability. These capacitors have been proven in over 20 years of field service and numerous customer application qualification tests for use in Military and Aerospace Systems.

72 Boyd Avenue E. Providence, RI 02914 USA TEL 401.435.3555
URL quanticevans.com
EML info@quanticevans.com

434.239.6941 URL quanticpaktron.com EML info@quanticpaktron.com

Stacked, Multilayer Polymer (MLP) Film **Capacitors for Mission-Critical Applications**

Quantic™ Paktron stands out as a pioneer in capacitor technology with its innovative stacked, multilayer polymer (MLP) construction. This advanced design offers significant advantages over conventional wound film capacitors, making Quantic™ Paktron a preferred choice across diverse markets including automotive, commercial, high-reliability, military, space, and telecommunications sectors. These stacked, multilayer polymer [MLP] film capacitors serve as an excellent alternative to ceramic capacitors in critical "cannot fail" applications that require robust mechanical and electrical performance.

All Quantic™ Paktron products are design registrable.

Quantic Paktron

Angstor

- > 0.10uF 10uF
- > 100VDC 1200VDC
- > 7.5mm 15mm lead spacing

Capstick

- > 0.33uF 20uF
- > 50VDC 1200VDC
- > 10mm 15mm lead spacing
- > SMD versions available

Quencharc RC-Snubber

- > 200VDC 1600VDC
- up to 2W power ratings
- > UL/CSA versions available

New High Voltage MLP

- > <2uF typical values available
- > 1000VDC-1200VDC
- > 27.5mm lead spacing
- > SMD and thru-hole options

Advantages

Unique advantages over conventional wound film capacitors

- higher frequency operation
- > lower ESR and ESL
- > High dV/dT

Self-Encased Design

- > volumetrically efficient square shape
- > lightweight, higher capacitance density compared to boxed, wound capacitors
- mechanically resilient body

Ultra-High ripple current ratings

- ultra-low D.F. due to stacked construction, specialty dielectrics
- > unique design improves heat dissipation

High stability

- > zero DC-bias derating
- > low temperature coefficients
- > 20+ year life expectancy without significant cap degradation

Wide Operating Temperature range

> -55°C to +125°C, vs polypropylene (-55°C to 85°C [105°C]]: stable parameters across this range

Self Healing

- > during a fault condition, the affected area of the capacitor is "cleared", isolating the fault and allowing the capacitor to continue to operate as normal
- > mechanically flexible, no susceptibility to piezoelectric effect, surge cracking

Standard values

- > corresponding to the needs of wide bandgap switching applications
- > custom values available

Lead Times 8-10 weeks, less in some cases

Manufactured in USA

Applications

- EMI filtering
- VPX Systems
- L-C filtering (power converters, power amplifiers, etc.)
- Low energy pulse applications (ignition, systems, etc)
- Boost converters
- Switched mode power supplies
- DC Block Applications (HF, plasma amplifiers, etc)
- DC link applications, (low energy)
- Voltage smoothing,
- Coupling and de-coupling
- Timing/tuning

AEC-Q200 qualification expected in Q4 2024, with final testing underway

Quantic Paktron MLP Design

Advantages

- > Stable under Bias Voltage
- > Stable under AC Voltage
- > Stable over Temperature
- Mechanically Flexible (doesn't crack)
- > Little to no derating required
- > Self Healing Does not fail short

Construction

Quantic Paktron specializes in Ultra Low ESR multilayer polymer film capacitors and leads in Film-Chip and SMT designs. The metallized electrode used in Quantic Paktron's proprietary Interleaf® Technology process assures reliable performance. Multilayer Polymer (MLP) surface mount, chip and lead framed capacitors are replacing MLC (ceramic) capacitors in higher voltage and reliability-sensitive equipment. This includes mobile and airborne power bus, server, PFC, renewable energy, inverter, and motor drive applications. Quantic Paktron holds in excess of seventy-five patents for film capacitors and machine design.

Quality

Quantic Paktron's unique approach to quality assurance sets us apart in the multiindustry sales markets. Since 1953, we have crafted and refined our own documented quality system tailored specifically to the capacitor industry. This system not only meets but exceeds the requirements of standardized systems in various markets, allowing us to deliver unrivaled products unrestricted by market limitations. At Quantic Paktron, our relentless focus on quality assurance drives us to consistently produce the finest products in the industry. Our manufacturing facility is ISO 9001:2015 certified.

1205 McConville Road Lynchburg, VA 24502 USA

TEL 434.239.6941
URL quanticpaktron.com
EML info@quanticpaktron.com

323-266-6603

quanticutc.com info@quanticutc.com

A Global Leader in Multilayer **Ceramic Capacitors**

Quantic™ UTC specializes in multilayer ceramic capacitors and high frequency switch mode power supply capacitors, both standard and custom, for high-reliability and mission-critical applications in the military, aerospace, telecommunications, and industrial industries.

Industries

- Military and Aerospace
- Space (High Reliability)
- Industrial
- > Telecommunications
- Computing

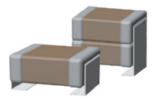
Applications

- > Filtering
- > Snubbers
- > Energy Storage
- > Power Conversion
- Coupling DeCoupling
- Munitions

Featured Products

MLCC

- Voltage Range: 6.3V-12KV
- > Cap Range: 1.2pF 220uF
- > Size: 01005 13060
- > Dielectric: NPO, X7R, X5R
- > Application: Industrial and commercial


SMPS

- > Voltage Range: 50V-500V
- Cap Range: .01uF 27uF
- Size: Case Code Size 1-6
- > Dielectric: NPO, X7R
- > Application: Military, high end protection

Military (MIL-PRF-49470)

- > B Level Voltage: 50V-500V
- > Cap Range: 0.15uF 47uF
- > Size: Case Size 3, 4, 5
- > Dielectric: BX, BR, BQ
- > T (Space) Level Qualified Products
- > Application: Military Mil-Prf-49470

MegaCap Type (BC Series)

- > Voltages to 1000V
- Higher capacitance on same footprint
- Dielectric: COG and X7R
- > Applications: Industrial Smoothing and Decoupling, resonant charging systems, DC to DC conversion, DC blocking, power supplies

Pulse Energy

- > Available in High temperature up to 250 °C
- > Up to 10KV range for single and multi-pulse firing applications
- > Custom sizes, capacitance, and voltage ranges are available
- > Applications: Missiles, Downhole, detonation

Radial Leaded

- > Voltage Range: 250V-10,000V
- > Cap Range: .05pF .68uF
- > Size: .25 x .22 to .55 x .28
- > Dielectric: NPO, X7R

Discoidal

- > Cap Range: .05pF 7.2uF
- > Voltage Range: 25V-3000V
- > Size: 0502 6429
- > Temperature Dielectric: NPO, X7R
- > Application: EMI suppression filter

Planar Arrays

- > Voltage Range: 50V-2000V
- > Cap Range: 100pF uF
- > Size: Custom/Standard: Circular,
- > Sub D, ARINC
- > Dielectric: NPO, X7R
- > Application: Connectors, low-pass

Capacitors Portfolio for Mission Critical Applications

Quantic offers a diverse range of capacitor technologies, including multilayer polymer film capacitors, multilayer ceramic capacitors and assemblies, high-frequency RF & Microwave ceramic capacitors, as well as the most power-dense hybrid wet tantalum capacitors in the industry. These capacitors are designed to deliver critical performance in defense, aerospace, energy, and communications applications, where reliability, space efficiency, weight reduction, and power optimization are critical requirements.

Quantic Evans

Hybrid Wet Tantalum

Evans hybrid wet tantalum capacitors are the most power dense in the industry, providing significant SWaP savings compared to traditional capacitor technologies.

- > Voltage range from 10 to 125V
- > Cap values ranges from 22uF-1F
- Rugged hermetically sealed design withstands high shock & vibration
- > Ultra-low ESR "enable" high-current applications
- Space Grade (Qualified to NASA-INST-002)

www.quanticevans.com

Quantic Eulex

High Frequency RF & Microwave Ceramic

Eulex's Patented technology allows ceramic capacitors to be manufactured with higher capacitance using fewer dielectrics improving temperature and frequency performance in a high reliability package.

- > Up to 20X capacitance
- > Frequencies exceeding 100GHz
- > Ultra-high Q dielectrics
- Product offering includes gap, binary, broadband, vertical layer, ultra-high Q
- > Voltage range from 6.3V-1500V

www.quanticeulex.com

Quantic Paktron

Stacked, Multi-layer Polymer (MLP) Film

Paktron's Multilayer Polymer capacitors offer a ceramic capacitor alternative in specific "cannot fail" applications that demand robust mechanical & electrical solutions.

- > Highest ripple current rating per C*V in the industry
- > Offers better electrical stability over temperature compared to XB
- > Self healing does not fail short
- Mechanically flexible does not crack
- > Voltage ratings from 50VDC-1200VDC
- > Cap values from 0.1uF-20uF

www.quanticpaktron.com

Multi-layer Ceramic (MLCC)

UTC manufactures standard and engineered high-reliability multi-layer ceramic chip capacitors (MLCCs) and leaded devices, approved to produce MIL-PRF 49470 parts to standard [B] level and (T) space levels, in addition to a wide variety of DLA drawings.

- > Equipped to perform a variety of MIL-PRF testing
- > Low ESR & ESL excellent for frequency decoupling
- Multiple dielectrics available including NPO, X7R, X5R, Y5V - PME and BME formulations.
- > Low-cost manufacturing options available
- Product offerings include MLCCs, planar arrays, discoidals, pulse energy. megacap type (BC), safety caps and SMPS.

www.quanticutc.com